sábado, 28 de mayo de 2016

Los polimeros en la sociedad actual


Los polimeros 

Se definen como macromoléculas compuestas por una o varias unidades químicas (monómeros) que se repiten a lo largo de toda una cadena. 

Un polímero es como si uniésemos con un hilo muchas monedas perforadas por el centro, al final obtenemos una cadena de monedas, en donde las monedas serían los monómeros y la cadena con las monedas sería el polímero. 

La parte básica de un polímero son los monómeros, los monómeros son las unidades químicas que se repiten a lo largo de toda la cadena de un polímero, por ejemplo el monómero del polietileno es el etileno, el cual se repite x veces a lo largo de toda la cadena.


Polietileno = etileno-etileno-etileno-etileno-etileno-…… 

Los polímeros isómeros: son polímeros que tienen escencialmente la misma composición de porcentaje, pero difieren en la colocación de los átomos o grupos de átomos en las moléculas. Los polímeros isómeros del tipo vinilo pueden diferenciarse en las orientaciones relativas (cabeza a cola, cabeza a cabeza, cola a cola, o mezclas al azar de las dos.) de los segmentos consecutivos (unidades monómeras.).



Características generales 
  • Bajo punto de fusión, que permite procesarlo fácilmente para darle forma. 
  • Baja densidad, lo cual los hace útiles en industrias como la automóvil por ser productos ligeros. 
  • Pobre conductividad eléctrica y térmica, permite usarlos como aislantes. 
  • Poca reactividad química, permite tenerlos en contacto con alimentos sin riesgos. 
Formacion 

  • Adición:En la formación de polímeros por adición se fabrica primero el monómero y a partir de ahí comienza a formarse la cadena. La molécula de monómero pasa a formar parte del polímero sin pérdida de átomos, es decir que la composición química de la cadena resultante es igual a la suma de las composiciones químicas de los monómeros que la conforman. 
  • Condensación:En la formación de polímeros por condensación la molécula de monómero pierde átomos cuando pasa a formar parte del polímero. Por lo general se pierde una molécula pequeña, como agua o HCL gaseoso. 
La polimerización por condensación genera subproductos, mientras que la polimerización por adición no. 

Tipos de reacciones: 

La formación de las cadenas poliméricas se producen mediante las diferentes polireacciones que pueden ocurrir entre los monóneros, estas polireacciones se clasifican en: 
Polimerización

Policondensación

Poliadición

Clasificacion: 

En función de la repetición o variedad de los monómeros: 

  • Homopolímero - Se le denomina así al polímero que está formado por el mismo monómero a lo largo de toda su cadena, el polietileno, poliestireno o polipropileno son ejemplos de polímeros pertenecientes a esta familia. 

  • Copolímero - Se le denomina así al polímero que está formado por al menos 2 monómeros diferentes a lo largo de toda su cadena, el ABS o el SBR son ejemplos pertenecientes a esta familia.Ahora bien, en los copolimeros encontramos una subclasificacion, que depende de la forma en que estén ordenados los monómeros: 
Al azar: Es cuando los monómeros no presentan orden alguno, por tanto presentan un patrón azaroso. 

Alternado: Se observa un patrón de monómeros alternados. 

En bloque: Son los que presentan un patrón alternado, pero bloques o “paquetes”. 

Injertado: Es cuando se ve una cadena principal formada por un solo monómero, y contiene ramificaciones formas por el otro monómero unidas a la cadena principal. 

En función a sus propiedades fisicas-quimicas: 

  • Termoestables: son polímeros que no se pueden fundir a través de un proceso de calentamiento simple, puesto que su masa es tan dura que necesita temperaturas muy elevadas para sufrir algún tipo de destrucción. 
  • Elastómeros: son polímeros que aunque pueden ser deformados, una vez que desaparece el agente que causó la pérdida de su forma pueden retornar a ella. tienen la propiedad de recuperar su forma al ser sometidos a una deformación de ella. Ej. Caucho vulcanizado. 
  • Termoplásticos: este es un tipo de polímeros que tienen facilidad para ser fundidos, y por lo tanto pueden ser moldeados. Si tienen una estructura regular y organizada, pertenecen a la subdivisión de los cristalinos, pero si su estructura es desorganizada e irregular, se consideran amorfos. 
  • Resinas:Son polímeros termoestables que sufren una transformación química cuando se funden, convirtiéndose en un sólido que al volverse a fundir, se descompone. 
  • Fibras:Tienen la forma de hilos. Se producen cuando el polímero fundido se hace pasar a través de unos orificios de tamaño pequeño de una matriz adecuada y se le aplica un estiramiento.
Según su estructura: 
Los monómeros al unirse pueden dar diferentes formas de polímeros, lo que influye en sus propiedades, por ejemplo, el material blando y moldeable tiene una forma lineal con cadenas unidas por interacciones (fuerzas) débiles, mientras que un polímero rígido y frágil tiene una estructura ramificada, y así vemos muchas otras características. 

  • Los lineales: se forman cuando el monómero que lo origina tiene 2 puntos de “ataque” (de unión), de modo que la polimerización ocurre en una sola dirección, pero en ambos sentidos. 
  • Los ramificados: se forman debido a que, a diferencia del lineal, estos tiene 3 o más puntos de “ataque”, de tal forma que la polimerización ocurre en forma tridimensional, en las 3 direcciones del espacio. Dentro de los polímeros ramificados encontramos 3: los con forma de estrella, de red y de dendritas.
De acuerdo a su origen: 

  • Los polímeros naturales son todos aquellos que provienen de los seres vivos, y por lo tanto, dentro de la naturaleza podemos encontrar una gran diversidad de ellos. Las proteínas, los polisacáridos, los ácidos nucleicos son todos polímeros naturales que cumplen funciones vitales en los organismos y por tanto se les llama biopolímeros.Otros ejemplos son la seda, el caucho, el algodón, la madera (celulosa), la quitina, etc.… 



  • Los polímeros semisintéticos han sido obtenidos mediante la transformación de un polímero natural. El caucho vulcanizado, componente de las llantas, es un ejemplo: se produce al hacer reaccionar caucho con azufre, a altas temperaturas, otros ejemplos serian la nitrocelulosa y celuloide 

  • Los polímeros sintéticos son los que se obtienen por síntesis ya sea en una industria o en un laboratorio, y están conformados a base de monómeros naturales, mientras que los polímeros semisinteticos son resultado de la modificación de un monómero natural. El vidrio, la porcelana, el nailon, el rayón, los adhesivos son ejemplos de polímeros sintéticos.


Aplicaciones y usos

Importancia 


Reside especialmente en la variedad de utilidades que el ser humano le puede dar a estos compuestos. Así, los polímeros están presentes en muchos de los alimentos o materias primas que consumimos, pero también en los textiles (incluso pudiéndose convertir en polímeros sintéticos a partir de la transformación de otros), en la electricidad, en materiales utilizados para la construcción como el caucho, en el plástico y otros materiales cotidianos como el poliestireno, el polietileno, en productos químicos como el cloro, en la silicona, etc. Todos estos materiales son utilizados por diferentes razones ya que brindan propiedades distintas a cada uso: elasticidad, plasticidad, pueden ser adhesivos, resistencia al daño, etc.

Bibliografia:

  • Consulta bibliografica:


Daniel Requeijo-Alicia de Requeijo (2009)
Química 2 Bachillerato
Editorial Biosfera


Rafael Arraiz Lucca (2002)
Quimica organica 2
Editorial Larense


Norman Allinger y otros (1978)
Química orgánica
Editorial Reverté

  • Consulta electrónica:

Definicion



Clasificacion de los polimeros






domingo, 24 de abril de 2016

Las biomoleculas en el entorno social 

Las Biomoléculas:

Se les considera biomoléculas a todos los compuestos químicos que al estar en conjunto conforman la materia viva, es decir, las bases químicas que permiten subsistir al ser vivo, existen infinidades de biomoléculas pero entre las más necesarias o las que se encuentran en abundancia son en primer lugar el nitrógeno, oxigeno, hidrógeno y carbono, en segundo lugar se puede mencionar sulfuro y fósforo.




¿Que las compone?

Los cuatro bioelementos más abundantes en los seres vivos son el carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N), representando alrededor del 99 por ciento de la masa de la mayoría de las células.
Estos cuatro elementos son los principales componentes de las biomoléculas debido a que:
1.- Permiten la formación de enlaces covalentes entre ellos, compartiendo electrones, debido a su pequeña diferencia de electronegatividad.
2.- Permiten a los átomos de carbono la posibilidad de formar esqueletos tridimensionales –C–C–C– para formar compuestos con número variable de carbonos.
3.- Permiten la formación de enlaces múltiples (dobles y triples) entre C y C, C y O, C y N, así como estructuras lineales ramificadas cíclicas, heterocíclicas, etc.
4.- Permiten la posibilidad de que con pocos elementos se den una enorme variedad de grupos funcionales (alcoholes, aldehídos, cetonas, ácidos, aminas, etc.) con propiedades químicas y físicas diferentes.

Clasificación:

Esta va a depender de la presencia de carbono en su estructura, de esta manera se les designa el nombre de biomoléculas inorgánicas a las que en su estructura hay ausencia de moléculas de carbono, este no pueden ser sintetizados por el ser humano pero aun así son esenciales para el mantenimiento de la vida, en este grupo se puede tomar como ejemplo el agua; el grupo opuesto, es decir, poseen moléculas de carbono los cuales son parte de su estructura se les designa biomoléculas orgánicas y también difieren con el grupo inorgánico en la característica de que estos si pueden ser sintetizados por el cuerpo humano.

Biomoléculas inorgánicas: Son las que no son producidas por los seres vivos, pero que son fundamentales para su subsistencia. En este grupo encontramos el agua, los gases y las sales inorgánicas.
  • Agua: Es una molécula simple y extraña, se considera el líquido de la vida. Es la sustancia más abundante en la biosfera en sus tres estados.En el agua fue donde surgió la vida. Es una molécula con un comportamiento diferente al de los demás líquidos, tiene unas extraordinarias propiedades físicas y químicas que le dan su importancia biológica.
  • Sales minerales: Las sales se forman por unión de un ácido con una base, liberando agua; pueden aparecer como cristales, disueltas, precipitadas o vinculadas a otras moléculas.


Biomoléculas orgánicas: Son moléculas con una estructura a base de carbono y son sintetizadas sólo por seres vivos. Podemos dividirlas en cinco grandes grupos.



  • Lípidos: Están compuestos por carbono e hidrógeno, y en menor medida por oxígeno. Su característica es que son insolubles en agua. Son lo que coloquialmente se conoce como grasas.
  • Glúcidos: Son los carbohidratos o hidratos de carbono. Están compuestos por carbono, hidrógeno y oxígeno, y sí son solubles en agua. Constituyen la forma más primitiva de almacenamiento energético.
  • Proteínas: Están compuestas por cadenas lineales de aminoácidos, y son el tipo de biomolécula más diversa que existe. Tienen varias funciones dependiendo del tipo de proteína del que estemos hablando.
  • Ácido nucléico: Son el ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico). Son macromoléculas formadas por nucleótidos unidos por enlaces.
  • Vitaminas: Las vitaminas también lo son. Estas son usadas en algunas reacciones enzimáticas como cofactores.

Según el grado de complejidad estructural las biomoléculas pueden ser: 



  • Precursoras: moléculas de peso bajo molecular, como el agua (H2O), anhídrido carbónico (CO2) o el amoníaco (NH3).
  • Intermediarios metabólicos: moléculas como el oxaloacetato, piruvato o el citrato, que posteriormente se transforman en otros compuestos. 
  •  Unidades estructurales También llamadas monómeros (unidades constitutivas de macromoléculas), como los monosacáridos (en celulosa, almidón), aminoácidos (de las proteínas), nucleótidos (en ácidos nucleicos).

Funciones:


Entre las funciones que estas biomoléculas realizan en los seres vivos destacan las siguientes: 


  • Energética, proporcionan energía que permite a la célula realizar todas sus funciones.
  • Enzimática, intervienen en la fabricación de las moléculas necesarias para vivir, para esto requiere de las enzimas que son los catalizadores biológicos, que aceleran las reacciones químicas llevadas a cabo en las células.
  • Contráctil, las biomoléculas presentes en los músculos, al contraerse, permiten que podamos movernos.
  • Estructural, consiste en dar forma y estructura a las células, así como constituir algunas partes de los organismos, como el cabello y las uñas.
  • Defensa, actúan en el organismo defendiéndolo de agentes patógenos como bacterias, virus, hongos, etc.
  • Reguladora, son biomoléculas que se encargan de dirigir y controlar la síntesis de otras moléculas.
  • Precursor, biomolécula que da origen a otra, con funciones y características diferentes.
Estructura:

  •  Carbohidratos: son moléculas biológicas muy abundantes. Se les conoce con el nombre de azúcares y están formadas por carbono, hidrógeno y oxigeno. Los carbohidratos o azúcares se pueden encontrar en diferentes formas:

Monosacáridos.- Son la unidad más pequeña de los azúcares.
Oligosacàridos.-Estos carbohidratos están formados por la unión de dos a diez unidades de azúcar.
Polisacáridos.- Como su nombre lo dice, son largas cadenas formadas por varias unidades de azúcar, incluso cientos.
 
monosacáridos están formados por una cadena de tres a siete átomos de carbonos. De acuerdo al número de carbonos se les llama triosa (3 carbonos), tetrosa (4 carbonos), pentosa (5 carbonos) y así sucesivamente, la glucosa que está formada por 6 carbonos, es una hexosa, lo mismo que la fructosa o azúcar de las frutas. La glucosa no se encuentra en la naturaleza en forma lineal, sino que tiende a formar anillos
Algunos ejemplos de monosacáridos son:
-Ribosa.- es una pentosa que forma parte del ARN o acido ribonucleico, que participa en los procesos de elaboración de proteínas.
-Desoxirribosa.- Es también una pentosa y forma parte del ADN, la molécula de la herencia.
Fructosa.- Es el azúcar de de las frutas, se encuentra en la miel y se utiliza como edulcolorante de muchos refrescos.
-Glucosa.- Es el monosacárido más abundante en los seres vivos, esta formada por seis carbonos, se produce por la fotosíntesis de las plantas, circula en nuestra sangre y la encontramos en muchos productos dulces.
-Galactosa.- Es una hexosa que forma parte del azúcar de la leche.
 

 Oligosacàridos la sacarosa es el azúcar que ponemos en la mesa todos los días, se obtiene de la caña de azúcar o remolacha. Los disacáridos están formados por dos monosacáridos. En la sacarosa se une una molécula de glucosa y una de fructosa. Otro disacárido familiar es la lactosa, que es el azúcar de la leche, está formada de la unión de la glucosa y la galactosa. La maltosa está formada por la unión de dos moléculas de glucosa.
 
       
 Polisacáridos.- son polímeros formados por la unión de muchos monosacáridos, algunos funcionan como reserva energética tanto en plantas como en animales mientras que otros cumplen funciones estructurales, es decir, que dan forma y firmeza a ciertos organismos por ejemplo:
 
Almidón.- Es el polisacárido de reserva de las plantas está formado por cientos de unidades de glucosa. Cuando las células de las hojas producen azúcares mediante la fotosíntesis, almacenan una parte de ella como almidón y otra la envían a las raíces y a las semillas, a las semillas les proporciona la energía que necesitan para germinar y crecer. Cuando consumimos productos como papa, trigo, maíz, aprovechamos esa reserva energética de las plantas y la convertimos en glucosa por medio de la digestión.
 
Glucógeno.- está formado por la unión de moléculas de glucosa formando una estructura muy ramificada, el azúcar que ingerimos en los alimentos se convierte en glucosa, el exceso se envía hacía el hígado y se almacena en forma de glucógeno, en su regulación participa la hormona insulina.
 
Celulosa.- contiene moléculas de glucosa enlazadas de manera distinta, es fibrosa  y cumple función estructural, los polímeros de glucosa forman fibrillas que dan forma a los tallos y hojas de las plantas. La celulosa se encuentra en las paredes de las células vegetales. La utilizamos en las prendas de algodón, en los muebles de madera y forman parte de las hojas de papel. Está no es digerible para los seres humanos.
 
Quitina.- Éste polisacárido se encuentra en el exoesqueleto de cangrejos, langostas e insectos, y también forman parte de la pared celular de los hongos. Si has pisado un insecto, has sentido cómo truena su cubierta externa. Este es un polisacárido estructural y cada unidad de glucosa contiene además un grupo amino (-NH2). Los enlácese entre las moléculas de quitina son como los de la celulosa, y el ser humano no los puede digerir.

  • Lipidos: se conocen también como grasas, son insolubles en agua y solubles en solventes orgánicos no polares como el éter, el cloroformo o el benceno. Están formados por carbono, hidrógeno y oxígeno, funcionan  como reservas energéticas de la que se obtiene más energía que de los carbohidratos.
 
Lípidos simples.- Sólo contienen carbono, hidrógeno y oxígeno. En este grupo se encuentran los aceites, grasas y ceras. Su función es de reserva energética, muchas de las grasas naturales se forman de la unión de una molécula de glicerol con tres ácidos grasos y se llaman triglicéridos. Muchos de ácidos grasos tienen 16 a 18 átonos de carbono por molécula. Los ácidos grasos pueden ser saturados si los enlaces entre los átomos de carbono de su larga cadena son sencillos, o insaturados si existe algún doble enlace entre ellos. Forman grasas y ceras que forman cubiertas aislantes que protegen, piel, pelaje, plumaje, hojas y frutos.
 
Lípidos compuestos.- además contiene otros elementos como fósforo y nitrógeno a este grupo pertenecen los fosfolípidos, los cuales contienen un grupo fosfato asociado a un lípido, el grupo fosfato se convierte en la cabeza polar de la molécula que va a ser hidrofilica y las cadenas de ácido graso se convierten en las colas hidrofóbicas, esta propiedad hace que los fosfolípidos al contacto con el agua se sitúen formando dos capas en las que las cabezas miran hacia el agua y las colas se esconden en medio, son componentes de la membrana celular.

Esteriodes.- se componen de cuatro anillos de carbono fusionados.

  •  Proteinas: son moléculas muy grandes formadas por la unión de monómeros llamados aminoácidos. Un aminoácido contiene un carbono central al que se une un grupo amino, un grupo carboxilo, un hidrógeno y un grupo radical. Hay veinte aminoácidos diferentes que forman parte de  los seres vivos, la diferencia entre ellos está en el grupo R.

  • Acidos nucleicos: Los ácidos nucleicos son polímeros formados por nucleótidos. Un nucleótido esta formado por una base nitrogenada, una molécula de azúcar y un fosfato, en el  caso el ácido desoxirribonucleico (ADN), el azúcar es la desoxirribosa.Las bases nitrogenadas que forman parte del ADN son: bases púricas (adenina y guanina), y bases pirimídicas (timina y citosina). Es en forma de doble helice. La función del ARN o ácido ribonucleico es interpretar la información codificada en el ADN y realizar el proceso de síntesis de proteínas  que se requieren en determinado momento en un organismo. Recuerda la molécula de ARN, también está formada por nucleótidos, pero en este caso el azúcar es ribosa y en las bases nitrogenadas, en lugar de timina, hay uracilo. Además no olvides que el ARN esta formado de una sola cadena.

Importancia:


Las Biomoléculas son el principal constituyente de todo ser vivo. Compuestas por 6 elementos que son: Carbono (C), Hidrógeno (H), Oxígeno (O), Nitrógeno (N), Azufre (S), y el Fósforo (P), estos también son llamados bioelementos primarios, que constituyen más del 95% de los tejidos vivos y forman el 99% de su peso. Al igual encontramos los bioelementos secundarios que proporcionan del 1 al 0.005% de la materia viva.
La importancia de las Biomoléculas es fundamental para los seres vivos ya que sin estas no podríamos formar las Biomoléculas Orgánicas que forman las bases de la materia viva, y gracias a estas podemos realizar los complejos procesos funcionales que caracterizan a los seres vivos.


Bibliografia:

  • Consulta bibliografica:


Daniel Requeijo-Alicia de Requeijo (2008)
Quimica a tu alcance, tercer año
Editorial Biosfera

Rafael Arraiz Lucca (2002)
Quimica organica
Editorial Larense
  • Consulta electrónica:

Biomoleculas y su clasificacion
Profesor en linea



sábado, 21 de noviembre de 2015

Alquenos y alquinos en la sociedad

Los alquenos:
Son hidrocarburos insaturados que tienen uno o varios dobles enlaces carbono-carbono en su molécula. Se puede decir que un alqueno es un alcano que ha perdido dos átomos de hidrógeno produciendo como resultado un enlace doble entre dos carbonos. Los alquenos cíclicos reciben el nombre de cicloalquenos.
Antiguamente se les conocía como olefinas dadas las propiedades que presentaban sus representantes más simples, principalmente el eteno, para reaccionar con halógenos y producir óleos.

¿Como se forman?
El enlace doble se forma de la siguiente manera:
Uno de los orbitales sp2 de un C se enlaza con otro orbital sp2 del otro C formando un enlace llamado sigma. El otro enlace está constituido por la superposición de los enlaces p que no participaron en la hibridación. Esta unión se denomina Pi (∏).
Esta vez se produce la hibridación Sp2. El orbital 2s se combina con 2 orbitales p, formando en total 3 orbitales híbridos llamados Sp2. El restante orbital p queda sin combinar. Los 3 orbitales Sp2 se ubican en el mismo plano con un ángulo de 120° de distancia entre ellos.
El orbital p que no participo en la hibridación ocupa un lugar perpendicular al plano que sostiene a los tres orbitales Sp2.
Ejemplos mas comunes:
Eteno:
CH2  =  CH2
Propeno:
CH2  =  CH2 –CH3
Buteno – 1
CH2  =  CH — CH2 — CH3
Buteno – 2
CH3  —  CH = CH — CH3
Pentino – 2
CH3 — C  ≡  C — CH2 —-CH3

Propiedades Físicas

  • 1. Estado Físico: los tres primeros miembros son gases a temperatura ordinaria, del C5 hasta el C18 son líquidos y los demás sólidos.

  • 2. Puntos de Ebullición: son un poco más bajos (algunos grados) que los alcanos.

  • 3. Puntos de Fusión: son ligeramente mayores que el de los alcanos.

  • 4. Densidad: un poco más alta que la de los alcanos.

  • 5. Solubilidad: la solubilidad de los alquenos en agua, aunque debil, es considerablemente más alta que la de los alcanos, debido a que la concentración de los electrones en el doble enlace, produce una mayor atracción del extremo positivo del dipolo de la molécula de agua.

Reacciones ó Propiedades Químicas
  • 1. Combustión: en presencia del calor producido por una llama, los alquenos reaccionan con el oxígeno atmosférico, originando dióxido de carbono (g) y agua. Esto constituye una combustión completa. En la reacción se libera gran cantidad de calor.

  • 2. Adición de un reactivo isométrico
  • Hidrogenación: adición de una molécula de hidrógeno (H2 ó H-H)
Los alquenos al ponerlos en contacto con el hidrógeno (H2) en presencia de un catalizador tal como el Pt, Pd ó Ni finalmente divididos, dan origen a alcanos.El doble enlace se rompe.
  • Halogenación: adición de una molécula de halógeno (X2, donde X es F, Cl, Br ó I).
  • Adición de haluros de hidrógeno
  • Adición de ácido sulfúrico: H2SO4 (H – OSO3H)
  • Adición de ozono (O3): ozonólisis

Propiedades y usos:

•          Los primeros tres compuestos, eteno (etileno), propeno y buteno, son gaseosos a temperatura ambiente; los siguientes 
son líquidos hasta los que tienen más de 16 carbonos que son sólidos.
•          Son relativamente poco solubles en agua, pero solubles en ácido sulfúrico concentrado y en solventes no polares.
•          Su densidad, punto de fusión y de ebullición se elevan conforme aumenta el peso molecular.
•          El uso más importante de los alquenos es como materia prima para la elaboración de plásticos.
A  El etileno o eteno es un gas incoloro, insípido y de olor etéreo cuya fórmula es CH2=CH2. Se usan grandes cantidades de 
etileno (eteno) para la obtención del polietileno, que es un polímero. (sustancia formada por miles de moléculas más pequeñas 
que se conocen como monómeros). Por ejemplo del polietileno el monómero es el etileno. El polietileno es un compuesto 
utilizado en la fabricación de envolturas, recipiente, fibras, moldes, etc..
•          El etileno es utilizado en la maduración de frutos verdes como piñas y tomates. En la antigüedad se utilizó como 
anestésico (mezclado con oxígeno) y en la fabricación del gas mostaza (utilizado como gas de combate).
•          El propeno,(nombre común propileno), se utiliza para elaborar polipropileno y otros plásticos, alcohol isopropílico 
(utilizado para fricciones) y otros productos químicos.





Alquenos en el mundo de los plásticos e importancia en el mundo de los materiales sinteticos:

     El grupo de los alquenos u olefinas está formado por hidrocarburos de cadena abierta en los que existe un doble enlace entre dos átomos de carbono. La fórmula general del grupo es CnH2n, donde n es el número de átomos de carbono. Al igual que los alcanos, 
los miembros más bajos son gases, los compuestos intermedios son líquidos y los más altos son sólidos. Los compuestos del grupo de los alquenos son más reactivos químicamente que los compuestos saturados. Reaccionan fácilmente con sustancias como los halógenos, adicionando átomos de halógeno a los dobles enlaces. No se encuentran en los productos naturales, pero se obtienen en la destilación destructiva de sustancias naturales complejas, como el carbón, y en grandes cantidades en las refinerías de petróleo, especialmente en el proceso de craqueo. El primer miembro de la serie es el eteno, C2H4. Los dienos contienen dos dobles enlaces entre las parejas de átomos de carbono de la molécula. Están relacionados con los hidrocarburos complejos del caucho o hule natural y son importantes en la fabricación de caucho y plásticos sintéticos. Son miembros importantes de esta serie el butadieno,
C4H6, y el isopreno, C5H8.

Los alquinos:

Son hidrocarburos alifáticos con al menos un triple enlace -C≡C- entre dos átomos de carbono. Se trata de compuestosmetaestables debido a la alta energía del triple enlace carbono-carbono. Su fórmula general es CnH2n-2..

Propiedades fisicas:

Son insolubles en agua, pero bastante solubles en disolventes orgánicos usuales y de baja polaridad: ligroína, éter, benceno, tetracloruro de carbono. Son menos densos que el agua y sus puntos de ebullición muestran el aumento usual con el incremento del número de carbonos y el efecto habitual de ramificación de las cadenas. Los puntos de ebullición son casi los mismos que para los alcanos o alquenos con el mismo esqueleto carbonado.
Los tres primeros términos son gases; los demás son líquidos o sólidos. A medida que aumenta el peso molecular aumentan la densidad, el punto de fusión y el punto de ebullición.
Los acetilenos son compuestos de baja polaridad, por lo cual sus propiedades físicas son muy semejantes a la de los alquenos y alcanos.
Hay que tener en cuenta que los acetilenos completen la regla del cuarteto.
Propiedades quimicas:
Las reacciones más frecuentes son las de adición: de hidrógenohalógenoagua, etc. En estas reacciones se rompe el triple enlace y se forman enlaces de menor polaridad: dobles o sencillos
Estructura y enlace en alquinos:
El triple enlace está compuesto por dos enlaces π perpendiculares entre si, formados por orbitales p no hibridados y un enlace sigma formado por hibridos sp.
Acidez del hidrógeno en alquinos terminales:
Los alquinos terminales tienen hidrógeno ácido de pKa =25 que se puede arrancar empleando bases fuertes, como el amiduro de sodio en amoniaco líquido.
La base conjugada (acetiluro) es un buen nucleófilo por lo que se puede utilizar en reacciones de alquilación.
Estabilidad del triple enlace:
La hiperconjugación estabiliza también los alquinos, el alquino interno es más estable que el terminal.
Síntesis de alquinos:
Los alquinos se obtienen mediante reacciones de eliminación a partir de dihaloalcanos vecinales o geminales.
Hidrogenación de alquinos:
La hidrogenación catalítica los convierte en alcanos, aunque es posible parar en el alqueno mediante catalizadores envenenados (lindlar). El sodio en amoniaco líquido hidrogena el alquino a alqueno trans, reacción conocida como reducción monoelectrónica.
Reactividad de alquinos:
El sulfúrico acuoso en presencia de sulfato de mercurio como catalizador hidrata los alquinos Markovnikov, dando cetonas. La hidroboración con boranos impedidos, seguida de oxidación con agua oxigenada, produce enoles que se tautomerizan a aldehídos o cetonas. El bromo molecular y los HX se adicionan a los alquinos de forma similar a los aquenos.
Usos:
Etino o Acetileno.- Es un gas incoloro, de olor agradable si se encuentra puro. Es poco soluble en agua, pero muy soluble en acetona (un volumen de acetona puede disolver 300 volúmenes de gas acetileno). 

Es combustible, y arde en el aire con flama muy luminosa, por lo que se usó mucho como manantial de luz (lámparas de acetileno). En su combustión desarrolla mucho calor, y cuando arde en oxígeno (soplete oxi-acetilénico) produce elevadas temperaturas (3,000 °C), por lo cual se emplea extensamente para soldar y cortal láminas de acero, como chapas de blindaje, hasta de 23 cm de espesor. 


El acetileno actua como narcótico, y en forma pura no es tóxico por lo que se le pudiera utilizar como anestésico, si las mezclas que han de efectuarse con aire o con oxígeno no fuesen explosivas (3% en volumen de acetileno en el aire, constituye ya una mezcla explosiva). 

Se le expende en tubos de acero que tienen una capa interior de asbesto embebido en acetono (la cual lo disuelve), ya que al estado líquido (presión) es muy peligroso, pues fácilmente se descompone con explosión.

El alquino 1-butino es un compuesto orgánico de la familia de alquinos. Éste es un gas extremadamente inflamable y reactivo. Éste se emplea en la síntesis de otros compuestos orgánicos debido a su alta reactividad. En estado puro es incoloro y en concentraciones muy altas suele presentar un olor a ajo.



Aplicaciones:

La mayor parte de los alquinos se fabrica en forma de acetileno. A su vez, una buena parte del acetileno se utiliza como combustible en la soldadura a gas debido a las elevadas temperaturas alcanzadas.
En la industria química los alquinos son importantes productos de partida por ejemplo en la síntesis del PVC (adición de HCl) de caucho artificial etc.
El grupo alquino está presente en algunos fármacos citostáticos.
Los polímeros generados a partir de los alquinos, los polialquinos, son semiconductores orgánicos y pueden ser dotados parecido al silicio aunque se trata de materiales flexibles y largos.

Fuentes:
  • http://www.quimicayalgomas.com/quimica-organica/hidrocarburos/alcanos-alquenos-y-alquinos/
  • sites.google.com/site/quimicaiii508/cuarta-unidad-corteza-terrestre-fuente-de-materiales-utiles-para-el-hombre/4-2-6-alquenos-y-su-importancia-en-el-mundo-de-los-plasticos-etileno-y-polietileno

  • Quimica experimentada,  Esteban Mendiola (2000)
    Editorial biosfera, Miranda-Venezuela
  • Quimica, segundo año diversificado,José Sarabia-Fernando Barragán(2010)    Editorial Romor, Caracas- Venezuela